
AN ARCHITECTURE FOR THE DEVELOPMENT OF CONTEXT-AWARE
APPLICATIONS IN ROBOTICS

Rossano P. Pinto∗, Eleri Cardozo∗, Eliane G. Guimarães†, Rodrigo F. Sassi∗, Alex Z.

Lima∗, Paulo R. S. L. Coelho∗

∗ Computer Engineering and Industrial Automation,
School of Electrical and Computer Engineering,

State University of Campinas
Campinas - SP - Brazil, 13083-970

†CenPRA - Renato Archer Research Center
Campinas - SP - Brazil, 13089-970

Emails: rossano@dca.fee.unicamp.br, eleri@dca.fee.unicamp.br,

eliane@dca.fee.unicamp.br, sassi@dca.fee.unicamp.br, trustlix@dca.fee.unicamp.br,

pcoelho@dca.fee.unicamp.br

Abstract— The ubiquity offered by today’s mobile networks and terminals motivates the development of
context-aware applications. A context-aware application is autonomous to adapt its behavior according to the
context in which it executes. The adaption process takes into account contextual information, such as capabilities
of the accessing terminal, user profile and preferences, and information about the surrounding environment
(e.g., geographical location, temperature, and light conditions). Context-awareness is a key issue for the design
and implementation of truly adaptive applications. However, due to the absence of supporting models and
architectures, context-awareness has been incorporated into existing applications in an ad-hoc way. In order to
contribute to a more systematic design and implementation of context-aware applications, this paper introduces
a metamodel and a supporting architecture for this class of applications. An application in the field of mobile
robotics is presented in order to illustrate the benefits of incorporating context-awareness into the design of
autonomous robotic systems.

Keywords— Context-awareness, metamodel, UML Profile, code generation

1 Introduction

Mobile computing is today ubiquitous and afford-
able thanks to advances in wireless networking
and mobile terminals. This ubiquity in commu-
nications motivates the development of applica-
tions able to adapt autonomously to the context in
which they execute. Such applications are called
Context-aware applications and present a high de-
gree of adaptability and autonomy not found on
today’s common distributed applications. In or-
der to benefit from the current context of execu-
tion, such applications must (1) sense the environ-
ment into which they are executing, (2) infer their
execution context, and (3) perform adaptation ac-
tions. In order to achieve this dynamic behavior,
these applications must interact with the resources
present in the environment in the same way they
interact with their own resources.

The current software development techniques
do not take context-awareness into account. No-
tably, software components, a well established
technology for building distributed applications,
are not enough for the development of context-
aware applications. The reason is that the cur-
rent component models and supporting platforms
do not consider context-awareness. For instance,
commercial component models, such as Enter-
prise Java Beans (EJB), support non-functional
requirements in the business domain (transaction,
persistence, and security), but requirements as-

signed to context-aware computing are not sup-
ported by those component models. As a result,
context-awareness must be incorporated into the
application as a functional or non-functional re-
quirement to be fulfilled by the developer, not
by the underlying component infrastructure (plat-
form).

This paper introduces a metamodel for the
development of context-aware applications built
from software components. The metamodel iden-
tifies the main elements of a context-aware appli-
cation. ACORD-CS, a supporting software plat-
form for context-aware applications is also pre-
sented, as well as an application in the field of
autonomous mobile robotics built according to the
metamodel and using the ACORD-CS platform.

Related work

The following related work are worth of mention.

ContextUML (Sheng and Beatallah, 2005) is
a UML profile aimed at designing context-aware
web services, so it is tied to this technology.
It offers abstractions like service (operation, in-
put/output message), sources (web services) of
context information, context binding and trig-
gering, constraint and action. A context con-
straint is modeled as a predicate (boolean func-
tion) that consists of an operator and two or
more operands: rainLikelihood≥ 80%. Condi-
tions are expressed using UML’s object constraint



language - OCL (Warmer and Kleppe, 2003). The
action part is a transformation function fil-

ter(M,R), where M is the output message and
R is a transformation rule. In this case, if the
output message is a list of tourist attractions, this
function would select only indoor attractions. Our
approach uses a tiny language able to make struc-
tural and behavioral adaptations that favors the
generation of rule based scripts for inference en-
gines like JESS and CLIPS. We argue that OCL
and derivatives, like XION (Xio, 2002) and Ac-
tion Semantics (Act, 2002), are not appropriate
for adaptation purposes, as it is too overwhelm-
ing for the task.

Ayed (Ayed and Berbers, 2006) presented
a UML Profile for the design of platform-
independent context-aware applications. The
UML Profile offers abstractions for context, con-
text quality, events, periodic information, and as-
sociations. Restrictions and adaptation condi-
tions are specified with OCL (Object Constraint
Language) (Warmer and Kleppe, 2003). Ayed
makes the distinction among structural, archi-
tectural and behavioral adaptation. Both struc-
tural and architectural adaptation is specified
through class diagrams, while behavioral adap-
tation is expressed through sequence diagrams.
Ayed, makes an interesting use of OCL and se-
quence diagrams to specify alternative execution
paths. OCL is used to make a choice among
the several execution paths. DYVA (A.Ketfi and
N.Belkhatir, 2004) proposes a metamodel for the
adaptation of component based software using in-
strumentation techniques over an already devel-
oped application. They insert adaptation code
into strategic points of the application, as con-
structors, factories, and general methods of in-
terest. To do that, the application must be de-
scribed by an XML document. We argue that,
if the source code of the application is not avail-
able, or it is too bad written, it is too difficult
to create this XML document. Our approach tar-
gets the development of new applications instead
of instrumenting an already developed one.

This paper is structured as follows. Section 2
introduces the metamodel for context-aware appli-
cations. Section 3 presents ACORD-CS. Section 4
illustrates the development of a context-aware ap-
plication using the ACORD-CS platform. Finally,
Section 5 presents some conclusions and final re-
marks.

2 A Metamodel for Context-aware
Applications

The proposed metamodel (Pinto et al., 2005)
for context-aware applications is expressed in
UML (Unified Modeling Language) (OMG, 2004)
through a class diagram shown in Fig. 1.

The metamodel defines seven UML classes

CtxPortConnection

constraints
{s.Type = t.Type}

t 0..* s 0..*

1..*

CtxContainer CtxComponent CtxPort

CtxPolicySet

0..*1 1

CtxPolicy

+Type

1..*

CtxMonitor

+Frequency

1..*

0..*

0..*

0..*

0..* 0..*

0..*

Figure 1: Conceptual model for the proposed
UML profile for the development of context-aware
applications.

and their relationships that represent the main
entities of a context-aware application. CtxCom-
ponent and CtxContainer are concepts that rep-
resent components and containers as defined by
the existing component models. As such, com-
ponents are units of deployment and composi-
tion, while containers provide the resources nec-
essary for the execution of components. More
specifically, containers supply the non-functional
requirements and the run-time environment, while
components supply the functional requirements of
the application.

CtxPort represents component’s endpoints for
interactions (ports). A port can support dif-
ferent interaction semantics, such as those pre-
scribed in RM-ODP (Reference Model for Open
Distributed Processing) (ISO/IEC 10746-2 / ITU-
T Rec. X.902, 1995). For instance, the CM-tel
component model supports synchronous (request-
reply), asynchronous (notification) or stream
(flow-based) ports (Guimarães, Maffeis, Pereira,
Russo, Cardozo, Bergerman and Magalhães, 2003;
Guimarães et al., 2003).

CtxPortConnection represents the connection
between two complementary ports, for instance, a
producer and a consumer of video flows. This ele-
ment holds time-varying properties of the connec-
tion, such as quality of service (QoS) parameters.

CtxPolicySet performs a central role in this
metamodel. It represents a set of adaptation poli-
cies that trigger adaptation actions based on ac-
quired context information. The relationship be-
tween a CtxPolicySet and any other element of
the model indicates that an adaptation can take
place within a container (e.g., by instantiating a
new component), a component (e.g., by changing
one of its configuration parameters), a port (e.g.,
by setting a port output format), and a port con-
nection (e.g., by setting the proper QoS param-
eters). The model does not enforce any mecha-
nism by which adaptation is performed. Behav-
ioral (parametric) adaptation is usually accom-
plished via the updating of component and port
configuration properties or by calling methods de-



fined by the components for performing adapta-
tion functions. Structural adaptation is accom-
plished via component creation, destruction, and
replacement, or via rearrangements in the port
connections. A CtxPolicySet is composed of one
or more policies represented by the CtxPolicy ele-
ment as shown by Fig. 2.

1..* 1..*

1..*

− type − type

CtxPolicySet

Condition CtxPolicy Action

Figure 2: A simple model for adaptation policies.

Each CtxPolicy owns one or more Conditions
that triggers one or more Actions when the condi-
tions hold. This model favors the use of rule-based
languages to describe adaptation policies.

A CtxMonitor is responsible for acquiring con-
textual information from any source and feed Ctx-
PolicySet with this information. CtxMonitors can
acquire contextual information from sensor read-
ings, service invocation (e.g., a weather forecast-
ing service), user input (e.g., preferences), and so
on. This element usually preprocesses the infor-
mation by performing aggregation, filtering, and
scaling.

3 An Architecture for Context-aware
Applications

A context-aware application depends on informa-
tion about the current context in order to perform
adaptation actions. This information generally
comes from an infrastructure that gathers infor-
mation about the environment and distributes it
to interested parties. In order to favor adapta-
tion, this infrastructure may also provide utility
services, such as search and registration of com-
ponents and resource reservation facilities.

ACORD-CS is an architecture for the sharing
of context information and components. ACORD-
CS implements all the elements of the metamodel
previously described. The architecture defines a
context-aware component model and a container
for supporting components. ACORD-CS also sup-
plies an inference engine to support adaptation
policies, and a set of servers. Three servers were
implemented in ACORD-CS: context, component,
and quality of service (QoS) servers, as shown by
Fig. 3. The elements of ACORD-CS are described
in the sequence.

Context-aware Container

A context-aware container is a run-time envi-
ronment that offers monitoring and adaptation
services to the components. Fig. 4 shows an

Internet
Intranet

Device Device

...

... ...Device

Context Servers
Federated

...

Component Servers
Federated

...

Federated
QoS ServersACORD−CS Container

Figure 3: ACORD-CS architecture.

ACORD-CS container, which represents the Ctx-
Container of the proposed metamodel.

FactoriesCtxPolicySets InterceptorsMonitors

Components (CtxComponent) Component states Policy (CtxPolicy)

(CtxComponent)(CtxMonitor)(CtxPolicySet)

ACORD−CS Container (CtxContainer)

Figure 4: ACORD-CS container.

The container provides a run-time environ-
ment for component factories, policy sets, and
monitors. Component factories provide methods
for creating, destroying, and searching for com-
ponents. Component factories are installed and
removed dynamically. As such, the type of com-
ponents a container supports may vary over time.
The ability to dynamically install new types of
components is an essential requirement for build-
ing true context-aware and ubiquitous applica-
tions. Monitors feed policy sets with contextual
information they obtain by interacting with the
environment and servers. Policy sets are com-
posed of policies that are evaluated every time
the system state changes (e.g., by the creation
or destruction of components, or by component
parameter adjustment). The element CtxPolicy-
Set represents an inference engine in ACORD-CS.
In the case of a policy condition match, the cor-
responding action is executed. Actions produce
behavioral and structural adaptation over the ap-
plication. Finally, interceptors are hooks that al-
low pre and post processing in method calls for
purposes of logging, security, and resource man-
agement.

Context Server

Context servers are responsible for gathering,
compiling and distributing context information.
A context server keeps also information about
the resources and services available in a domain.
Context-aware containers provide access inter-
faces to this server in order to allow monitors and
other elements to interact with it. Interaction can



be a query or a subscription for further notifica-
tion. For instance, a monitor can subscribe to re-
ceive updated context information, such as new re-
sources that are incorporated to the environment.
Context servers can also employ policies to con-
trol the way context information is propagated to
the subscribed parties.

Component Server

Component servers act as a repository of facto-
ries for managing context-aware components. It
provides functionalities for searching and storing
component factories. Both context and compo-
nent servers can be grouped into federations of
collaborating servers.

QoS Server

Since components can feature stream ports, such
as video and audio ports, a mechanism for re-
source reservation to assure quality of service for
media flows are necessary. The QoS server (Pinto
et al., 2003) accepts requests for the reservation of
network resources, such as bandwidth and traffic
priority. This server has the same functionality as
the Differentiated Service (DiffServ) Bandwidth
Broker.

4 Application in Mobile Robotics

A context-aware application in the field of mo-
bile robotics was developed in compliance with
ACORD-CS. The application consists of an en-
vironment in which mobile robots are allowed to
navigate. The environment has as resources an
Axis 213-PTZ panoramic camera and a 802.11b/g
wireless network access point. A Pioneer P3-DX
mobile robot from ActivMedia1 equipped with
an on-board processor, sonars, a Canon VC-C4
PTZ camera and 802.11b wireless network inter-
face, was employed in the experiment. All the
servers (context and component) and the robot
runs GNU/Linux as operating system. Fig. 5 il-
lustrates the environment.

The robot can be remotely controlled by an
operator, using the operator’s console, which al-
lows to control the movements of the robot and
the cameras, and to receive and save the images
captured by the on-board and panoramic cameras.
Fig. 6 shows the operator’s console.

The environment provides a Context Server,
which points to services, such as panoramic cam-
eras, navigation beacons (bluetooth antennas, bar
code marks), and communication devices (WiFi
access points).

An ACORD-CS container (RobotContainer)
runs on the robot’s on-board processor. In this
container is instantiated a monitor that senses the

1http://www.mobilerobots.com

NetCam

Router

Context/Component Servers

Ethernet LAN

Intranet
Internet

WiFi Access Point

Terminal
Operator’s

Axis 213

Pioneer3−DX

...

Figure 5: Infrastructure for the application.

Figure 6: Operator’s console.

wireless access points and their signal strengths.
Three components are initially instantiated in the
container: a video producer that captures video
from the on-board camera, a tele-operation server
component with methods like move, turn, etc.,
and a navigator component that implements the
potential field algorithm for autonomous naviga-
tion.

An ACORD-CS container (ClientContainer)
is also installed on the operator’s terminal. A
monitor in this container accesses the Con-
text Server to locate the available robots and
panoramic cameras present in the environment.
Four components are installed on this container:
two video consumer components that present
video from the on-board and panoramic cameras,
a tele-operation client component that allows the
operator to move the robot manually, and a navi-
gator component identical to that installed on the
robot’s container. Fig. 7 shows the initial config-
uration. The CtxPolicySet acquires the mission
from the operator (target point and navigation
parameters) and stores on the navigators compo-
nents (Mission Assignment in Fig. 7).

The CtxPolicySet installed on the robot’s con-
tainer performs behavioral and structural adapta-
tion functions based on the signal strength mea-
sured in its wireless interface (Linux utility iwlist



CtxMonitor

(Java)

API

ARIA

Resource CtxMonitorCtxPolicySet

Producer

Navigator

Teleoperation
Server

CtxPolicySet
Signal strength

Video

Navigator

Teleoperation
Client

Consumer
Video

Assignment
Mission

robots

Server
Context

Resources
Landmarks
Maps

panoramic cameras

Pioneer3−DX

Figure 7: Initial Configuration.

and iwconfig are employed to sense the signal
strength). The actual signal strength defines three
contexts:

Full connectivity context - In this context, the
robot is controlled by the components running on
operator’s terminal (tele-operation or navigator).
Fig. 8 shows the structure of the application in
this context.

CtxMonitor

(Java)

API

ARIA

CtxMonitorCtxPolicySet

Navigator

Teleoperation
Server

CtxPolicySet
Signal strength

Teleoperation
Client

Navigator

Video
Consumer

Video
Consumer

Producer
Video

Producer
Video

Context
Server

Pioneer3−DX

Figure 8: Full connectivity context.

Deficient connectivity context - In this con-
text, the robot is still controlled by the com-
ponents running on operator’s terminal (tele-
operation or navigator), but the video framerate
of the on-board camera decreases (a behavioral
adaptation). In this context, a structural adapta-
tion also takes place with the download of a video
consumer component from the component server.
This component stores video frames on a file in-
stead of presenting them. This component is not
connected yet in this context. Fig. 9 shows the
structure of the application in this context.

CtxMonitor

(Java)

API

ARIA

CtxMonitorCtxPolicySet

Navigator

Teleoperation
Server

CtxPolicySet
Signal strength

Teleoperation
Client

Navigator

Video
Consumer

Video
Consumer

Producer
Video

Video
Consumer

Dynamicly installed component

Producer
Video

Server
Context

Server
Component

Pioneer3−DX

Figure 9: Deficient connectivity context.

Lack of connectivity context - In this context,
the robot is disconnected from the operator’s ter-
minal. The navigator component on the robot’s
container assumes the navigation. The video con-
sumer component downloaded previously is con-
nected to the video producer in order to record
the video captured by the on-board camera for a
posteriori exhibition. Fig. 10 shows the structure
of the application in this context (a strong struc-
tural adaptation took place).

CtxMonitor

(Java)

API

ARIA

Producer

Navigator

Teleoperation
Server

CtxPolicySet
Signal strength

Video

Teleoperation
Client

Navigator

Video
Consumer

Video
Consumer

Video
Consumer

CtxPolicySet CtxMonitorProducer
Video

Server
Context

Pioneer3−DX

Figure 10: Lack of connectivity context.

Evaluation

All the implementation was written in the Java
language. To deal with new component (and fac-
tory) types, these are instantiated using the native
Java language reflection API. CtxPolicySet counts
with the JESS (Friedman-Hill, 2003) inference en-
gine, and all the policies are written in the JESS
language. Considering this, the size and instanti-
ation times are quite small, as shown by Tables 1
and 2 .

Node Size (KB)
Robot ˜864
Client ˜824

Context/Component Server ˜820

Table 1: Installation size of components in each
node.

Operations Time
VideoConsumer XML search ˜142ms

download and parse
VideoConsumer.jar (˜3.2KB) ˜164ms

download and install
VideoConsumer instantiation ˜11ms

RobotClient XML search ˜60ms
download and parse

RobotClient.jar (˜11KB) ˜755ms
download and install

Table 2: Average time measurements over 20 run-
nings.

The VideoConsumer XML (Table 2) is the
component description stored in the component



server. It is searched by the RobotContainer
when it detects a Deficient connectivity, and by
the ClientContainer when it detects a panoramic
and an on-board camera. The information con-
tained therein is used to download and instantiate
the VideoConsumer at the RobotContainer and
ClientContainer. The VideoConsumer is packaged
in a jar file at the component server. Similarly,
RobotClient XML is the description of the compo-
nents (Tele-operation Client and Navigator) used
to interact with the robot. When the client con-
tainer detects a robot presence, it searches the
robot description file, downloads the RobotClient
jar file and instantiates the necessary components.
The experiment showed that the download and in-
stantiation times are small, proving its feasibility
in an ever changing and highly dynamic environ-
ment.

5 Conclusion

The process of writing context-aware applications
is rather difficult and error prone. Delegating the
task of gathering, processing contextual informa-
tion, and adapt, to the application programmer is
too overwhelming. The use of context-aware soft-
ware components and a metamodel that targets
context-awareness, relief the developer from this
responsibility. This is achieved by delegating some
responsibilities to the container in the form of non-
functional requirements, such as (re)connection of
ports, system state monitoring (quality of port
connections), and context gathering and process-
ing. Also, the adaptation rules are separated from
the main application logic (CtxPolicySet). The
servers offered by ACORD-CS enable the discov-
ery and use of context information and software
components, not present at startup time, by the
application containers, allowing the use of differ-
ent resources encountered during the application
execution, also the quality of service offered to au-
dio and video flows are guaranteed by network
resource reservation featured in the ACORD-CS
QoS server. We are currently working on a bet-
ter way to represent policies in a high-level and
technology independent language, and on the val-
idation of our metamodel using other component
models other than ACORD-CS.

References

Act (2002). “OMG Unified Modeling Lan-
guage Specification (Action Semantics)”.
http://www.omg.org/docs/ptc/02-01-
09.pdf.

A.Ketfi and N.Belkhatir (2004). “A
Metamodel-based approach for the dy-
namic reconfiguration of component-
based software”, ICSR . http://www-

adele.imag.fr/Les.Publications/intConferences/-
ICSR2004.pdf.

Ayed, D. and Berbers, Y. (2006). “UML Pro-
file for the Design of a Platform-Independent
Context-Aware Applications.”, MODDM’06.,
ACM, Melbourne, Australia.

Friedman-Hill, E. (2003). “Jess in Action: Rule-
Based Systems in Java”, Manning.

Guimarães, E. G., Maffeis, A. T., Pereira, J. L.,
Russo, B. G., Cardozo, E., Bergerman, M.
and Magalhães, M. F. (2003). “REAL: A
Virtual Laboratory for Mobile Robot Ex-
periments”, IEEE Transactions on Education
46(1): 37–42.

Guimarães, E. G., Maffeis, A. T., Pinto, R. P.,
Miglinski, C. A., Cardozo, E., Bergerman, M.
and Magalhães, M. F. (2003). “REAL: A Vir-
tual Laboratory Built from Software Compo-
nents”, Proceedings of the IEEE 91(3): 440–
448.

ISO/IEC 10746-2 / ITU-T Rec. X.902 (n.d.).
“ODP Reference Model Part 2, Foundations”,
International Organization for Standardiza-
tion and International Electrotechnical Com-
mittee”.

OMG (2004). Unified Modeling Language,
http://www.uml.org/. Last access in
27/09/2005.

Pinto, R. P., Cardozo, E. and Guimarães, E. G.
(2005). “Um Modelo de Componentes para
Aplicações Senśıveis a Contexto”, V Work-
shop de Desenvolvimento Baseado em Com-
ponentes (WDBC’05), SBC, Juiz de Fora,
MG.

Pinto, R. P., Guimarães, E. G., Cardozo, E.
and Magalhães, M. F. (2003). “Incorpo-
ração de Qualidade de Serviço em Aplicações
Telemáticas”, 21 Simpósio Brasileiro de Re-
des de Computadores (SBRC’03), SBC, Na-
tal, RN.

Sheng, Q. Z. and Beatallah, B. (2005). “Con-
textUML: A UML-Based Modeling Language
for Model-Driven Development of Context-
Aware Web Services”, ICMB .

Warmer, J. and Kleppe, A. (2003). “The Object
Constraint Language”, second edn, Addison
Wesley.

Xio (2002). “Xion Action Language”,
http://lglpc35.epfl.ch/objx/netsilon/xion/-
index.html. Last access in 27/09/2005.


